

What is CPU Scheduling?

CPU scheduling is a process which allows one process to use the CPU while the

execution of another process is on hold(in waiting state) due to unavailability of

any resource like I/O etc, thereby making full use of CPU. The aim of CPU

scheduling is to make the system efficient, fast and fair.

Whenever the CPU becomes idle, the operating system must select one of the

processes in the ready queue to be executed. The selection process is carried out by

the short-term scheduler (or CPU scheduler). The scheduler selects from among

the processes in memory that are ready to execute, and allocates the CPU to one of

them.

CPU Scheduling: Dispatcher

Another component involved in the CPU scheduling function is the Dispatcher.

The dispatcher is the module that gives control of the CPU to the process selected

by the short-term scheduler. This function involves:

 Switching context

 Switching to user mode

Types of CPU Scheduling

CPU scheduling decisions may take place under the following four circumstances:

 When a process switches from the running state to the waiting state(for I/O

request or invocation of wait for the termination of one of the child

processes).

 When a process switches from the running state to the ready state (for

example, when an interrupt occurs).

 When a process switches from the waiting state to the ready state(for

example, completion of I/O).

 When a process terminates.

In circumstances 1 and 4, there is no choice in terms of scheduling. A new

process(if one exists in the ready queue) must be selected for execution. There is a

choice, however in circumstances 2 and 3.When Scheduling takes place only under

circumstances 1 and 4, we say the scheduling scheme is non-preemptive;

otherwise the scheduling scheme is preemptive.

Non-Preemptive Scheduling

Under non-preemptive scheduling, once the CPU has been allocated to a process,

the process keeps the CPU until it releases the CPU either by terminating or by

switching to the waiting state.This scheduling method is used by the Microsoft

Windows 3.1 and by the Apple Macintosh operating systems.

Preemptive Scheduling

In this type of Scheduling, the tasks are usually assigned with priorities. At times it

is necessary to run a certain task that has a higher priority before another task

although it is running. Therefore, the running task is interrupted for some time and

resumed later when the priority task has finished its execution.

CPU Scheduling: Scheduling Criteria

There are many different criterias to check when considering the "best" scheduling

algorithm, they are:

CPU Utilization:To make out the best use of CPU and not to waste any CPU

cycle, CPU would be working most of the time(Ideally 100% of the time).

Considering a real system, CPU usage should range from 40% (lightly loaded) to

90% (heavily loaded.)

Throughput:It is the total number of processes completed per unit time or

rather say total amount of work done in a unit of time. This may range from

10/second to 1/hour depending on the specific processes.

Turnaround Time: It is the amount of time taken to execute a particular

process, i.e. The interval from time of submission of the process to the time of

completion of the process(Wall clock time).

Waiting Time: The sum of the periods spent waiting in the ready queue

amount of time a process has been waiting in the ready queue to acquire get control

on the CPU.

Load Average: It is the average number of processes residing in the ready

queue waiting for their turn to get into the CPU.

Response Time:Amount of time it takes from when a request was submitted

until the first response is produced. Remember, it is the time till the first response

and not the completion of process execution(final response).

In general CPU utilization and Throughput are maximized and other factors are

reduced for proper optimization.

Scheduling Algorithms

To decide which process to execute first and which process to execute last to

achieve maximum CPU utilisation, computer scientists have defined some

algorithms, they are:

 First Come First Serve(FCFS) Scheduling

 Shortest-Job-First(SJF) Scheduling

 Priority Scheduling

 Round Robin(RR) Scheduling

 Multilevel Queue Scheduling

First Come First Serve (FCFS): Simplest scheduling algorithm that

schedules according to arrival times of processes. First come first serve scheduling

algorithm states that the process that requests the CPU first is allocated the CPU

first. When the CPU is free, it is allocated to the process at the head of the queue.

The running process is then removed from the queue. FCFS is a non-preemptive

scheduling algorithm.

Characteristics of FCFS method:

 It offers non-preemptive and pre-emptive scheduling algorithm.

 Jobs are always executed on a first-come, first-serve basis

 It is easy to implement and use.

 However, this method is poor in performance, and the general wait time is

quite high.

 Note:First come first serve suffers from convoy effect.

Shortest Job First (SJF): Process which have the shortest burst time are

scheduled first.If two processes have the same bust time then FCFS is used to

break the tie. It is a non-preemptive scheduling algorithm.

Characteristics of SRT scheduling method:

 This method is mostly applied in batch environments where short jobs are

required to be given preference.

 This is not an ideal method to implement it in a shared system where the

required CPU time is unknown.

 Associate with each process as the length of its next CPU burst. So that

operating system uses these lengths, which helps to schedule the process

with the shortest possible time.

Shortest Remaining Time First (SRTF): It is preemptive mode of

SJF algorithm in which jobs are schedule according to shortest remaining time.

Round Robin Scheduling: Each process is assigned a fixed time(Time

Quantum/Time Slice) in cyclic way. It is designed especially for the time-sharing

system. The ready queue is treated as a circular queue. The CPU scheduler goes

around the ready queue, allocating the CPU to each process for a time interval of

up to 1-time quantum. To implement Round Robin scheduling, we keep the ready

queue as a FIFO queue of processes. New processes are added to the tail of the

ready queue. The CPU scheduler picks the first process from the ready queue, sets

a timer to interrupt after 1-time quantum, and dispatches the process. One of two

things will then happen. The process may have a CPU burst of less than 1-time

quantum. In this case, the process itself will release the CPU voluntarily. The

scheduler will then proceed to the next process in the ready queue. Otherwise, if

the CPU burst of the currently running process is longer than 1-time quantum, the

timer will go off and will cause an interrupt to the operating system. A context

switch will be executed, and the process will be put at the tail of the ready queue.

The CPU scheduler will then select the next process in the ready queue.

Characteristics of Round-Robin Scheduling

 Round robin is a hybrid model which is clock-driven

 Time slice should be minimum, which is assigned for a specific task to be

processed. However, it may vary for different processes.

 It is a real time system which responds to the event within a specific time

limit.

Priority Based scheduling (Non-Preemptive): In this scheduling,

processes are scheduled according to their priorities, i.e., highest priority process

is scheduled first. If priorities of two processes match, then schedule according to

arrival time. Here starvation of process is possible.

Multilevel Queue Scheduling: According to the priority of process,

processes are placed in the different queues. Generally high priority process are

placed in the top level queue. Only after completion of processes from top level

queue, lower level queued processes are scheduled. It can suffer from starvation.

Characteristic of Multiple-Level Queues Scheduling:

 Multiple queues should be maintained for processes with some

characteristics.

 Every queue may have its separate scheduling algorithms.

 Priorities are given for each queue.

Below are different time with respect to a process

Arrival Time: Time at which the process arrives in the ready queue.

Completion Time: Time at which process completes its execution.

Burst Time: Time required by a process for CPU execution.

Turn Around Time: Time Difference between completion time and arrival time.

Turn Around Time = Completion Time – Arrival Time

Waiting Time(W.T): Time Difference between turn around time and burst time.

Waiting Time = Turn Around Time – Burst Time

Why do we need scheduling?

A typical process involves both I/O time and CPU time. In a uni programming

system like MS-DOS, time spent waiting for I/O is wasted and CPU is free during

this time. In multi programming systems, one process can use CPU while another

is waiting for I/O. This is possible only with process scheduling.

Max throughput [Number of processes that complete their execution per time unit]

Min turnaround time [Time taken by a process to finish execution]

Min waiting time [Time a process waits in ready queue] Objectives of Process

Scheduling Algorithm

Max CPU utilization [Keep CPU as busy as possible]

Fair allocation of CPU.

Min response time [Time when a process produces first response]

Some useful facts about Scheduling Algorithms: FCFS can cause long waiting

times, especially when the first job takes too much CPU time.

Both SJF and Shortest Remaining time first algorithms may cause starvation.

Consider a situation when the long process.

Topic Thread

A thread is a single sequence stream within in a process. Because threads have

some of the properties of processes, they are sometimes called lightweight

processes. In a process, threads allow multiple executions of streams. In many

respect, threads are popular way to improve application through parallelism. a

thread can be in any of several states (Running, Blocked, Ready or Terminated).

Each thread has its own stack. Since thread will generally call different procedures

and thus a different execution history. This is why thread needs its own stack. An

operating system that has thread facility, the basic unit of CPU utilization is a

thread. A thread has or consists of a program counter (PC), a register set, and a

stack space. Threads are not independent of one other like processes as a result

threads shares with other threads their code section, data section, OS resources

also known as task, such as open files and signals.

Processes Vs Threads

As we mentioned earlier that in many respect threads operate in the same way as

that of processes. Some of the similarities and differences are:

Similarities:Like processes threads share CPU and only one thread active

(running) at a time.

Like processes, threads within a processes, threads within a processes execute

sequentially.

Like processes, thread can create children.

And like process, if one thread is blocked, another thread can run.

Differences: Unlike processes, threads are not independent of one another.

Unlike processes, all threads can access every address in the task .

Unlike processes, thread are design to assist one other. Note that processes might

or might not assist one another because processes may originate from different

users.

 Why Threads?

Following are some reasons why we use threads in designing operating systems.A

process with multiple threads make a great server for example printer

server.Because threads can share common data, they do not need to use

interprocess communication.Because of the very nature, threads can take

advantage of multiprocessors. Threads are cheap in the sense that They only need a

stack and storage for registers therefore, threads are cheap to create. Threads use

very little resources of an operating system in which they are working. That is,

threads do not need new address space, global data, program code or operating

system resources. Context switching are fast when working with threads. The

reason is that we only have to save and/or restore PC, SP and registers. But this

cheapness does not come free - the biggest drawback is that there is no protection

between threads.

Difference between Process and Thread

S.N PROCESS THREAD

1 Process is heavy weight or

resource intensive.

Thread is light weight, taking

lesser resources than a process.

2 Process switching needs

interaction with operating

system

Thread switching does not need

to interact with operating

system.

3 In multiple processing

environments, each process

executes the same code but has

its own memory and file

resources.

All threads can share same set of

open files, child processes.

4 If one process is blocked, then no

other process can execute until

the first process is unblocked

While one thread is blocked and

waiting, a second thread in the

same task can run.

5 Multiple processes without using

threads use more resources.

Multiple threaded processes use

fewer resources.

6 In multiple processes each

process operates independently

of the others.

One thread can read, write or

change another thread's data.

Advantages of Thread

 Threads minimize the context switching time.

 Use of threads provides concurrency within a process.

 Efficient communication.

 It is more economical to create and context switch threads.

 Threads allow utilization of multiprocessor architectures to a greater scale

and efficiency.

Difference between User-Level & Kernel-

Level Thread

S.N. User-Level Threads Kernel-Level Thread

1 User-level threads are faster to

create and manage
Kernel-level threads are slower

to create and manage.

2 Implementation is by a thread

library at the user level.
Operating system supports

creation of Kernel threads.

3 User-level thread is generic and

can run on any operating system.
Kernel-level thread is specific to

the operating system.

4 Multi-threaded applications

cannot take advantage of

multiprocessing.
Kernel routines themselves can

be multithreaded.

Topic Process Management

Process:A process is basically a program in execution. The execution of a

process must progress in a sequential fashion. A process is defined as an entity

which represents the basic unit of work to be implemented in the system. To put it

in simple terms, we write our computer programs in a text file and when we

execute this program, it becomes a process which performs all the tasks mentioned

in the program. When a program is loaded into the memory and it becomes a

process, it can be divided into four sections - stack, heap, text and data. The

following image shows a simplified layout of a process inside main memory -

Process Components

s.no Component Description

1 stack
The process Stack

contains the

temporary data

such as

method/function

parameters, return

address and local

variables.

2 Heap
This is dynamically

allocated memory

to a process during

its run time.

3 Text
This includes the

current activity

represented by the

value of Program

Counter and the

contents of the

processor's

registers.

Program

A program is a piece of code which may be a single line or millions of lines. A

computer program is usually written by a computer programmer in a programming

language. For example, here is a simple program written in C programming

language -

#include <stdio.h>

int main() {

 printf("Hello, World! \n");

 return 0;

}

A computer program is a collection of instructions that performs a specific task

when executed by a computer. When we compare a program with a process, we

can conclude that a process is a dynamic instance of a computer program. A part of

a computer program that performs a well-defined task is known as an algorithm. A

collection of computer programs, libraries and related data are referred to as a

software.

Topic: process synchronization

Process Synchronization means sharing system resources by processes in a such a

way that, Concurrent access to shared data is handled thereby minimizing the

chance of inconsistent data. Maintaining data consistency demands mechanisms to

ensure synchronized execution of cooperating processes. Process Synchronization

was introduced to handle problems that arose while multiple process executions.

Some of the problems are discussed below.

Critical Section Problem

A Critical Section is a code segment that accesses shared variables and has to be

executed as an atomic action. It means that in a group of cooperating processes,at a

given point of time, only one process must be executing its critical section. If any

other process also wants to execute its critical section, it must wait until the first

one finishes.

Solution to Critical Section Problem

A solution to the critical section problem must satisfy the following three

conditions:

1. Mutual Exclusion:Out of a group of cooperating processes, only one process

can be in its critical section at a given point of time.

2. Progress:If no process is in its critical section, and if one or more threads want

to execute their critical section then any one of these threads must be allowed to

get into its critical section.

3. Bounded Waiting:After a process makes a request for getting into its critical

section, there is a limit for how many other processes can get into their critical

section, before this process's request is granted.So after the limit is reached, system

must grant the process permission to get into its critical section.

 On the basis of synchronization, processes are categorized as one of the following

two types:

Independent Process : Execution of one process does not affects the execution of

other processes.

Cooperative Process : Execution of one process affects the execution of other

processes.

Process synchronization problem arises in the case of Cooperative process also

because resources are shared in Cooperative processes.

 Race Condition When more than one processes are executing the same code or

accessing the same memory or any shared variable in that condition there is a

possibility that the output or the value of the shared variable is wrong so for that all

the processes doing race to say that my output is correct this condition known as

race condition. Several processes access and process the manipulations over the

same data concurrently, then the outcome depends on the particular order in which

the access takes place.

 Peterson’s Solution

Peterson’s Solution is a classical software based solution to the critical section

problem.In Peterson’s solution, we have two shared variables: boolean flag[i]

:Initialized to FALSE, initially no one is interested in entering the critical section

int turn : The process whose turn is to enter the critical section.Peterson’s Solution

preserves all three conditions :Mutual Exclusion is assured as only one process can

access the critical section at any time. Progress is also assured, as a process outside

the critical section does not block other processes from entering the critical section.

Bounded Waiting is preserved as every process gets a fair chance.

Disadvantages of Peterson’s Solution

It involves Busy waiting

It is limited to 2 processes.

Synchronization Hardware

Many systems provide hardware support for critical section code. The critical

section problem could be solved easily in a single-processor environment if we

could disallow interrupts to occur while a shared variable or resource is being

modified. In this manner, we could be sure that the current sequence of instructions

would be allowed to execute in order without pre-emption. Unfortunately, this

solution is not feasible in a multiprocessor environment. Disabling interrupt on a

multiprocessor environment can be time consuming as the message is passed to all

the processors. This message transmission lag, delays entry of threads into critical

section and the system efficiency decreases.

Mutex Locks

As the synchronization hardware solution is not easy to implement for everyone, a

strict software approach called Mutex Locks was introduced. In this approach, in

the entry section of code, a LOCK is acquired over the critical resources modified

and used inside critical section, and in the exit section that LOCK is released.As

the resource is locked while a process executes its critical section hence no other

process can access it.

TOPIC Semaphores

A Semaphore is an integer variable, which can be accessed only through two

operations wait() and signal(). There are two types of semaphores : Binary

Semaphores and Counting Semaphores.

Binary Semaphores : They can only be either 0 or 1. They are also known as

mutex locks, as the locks can provide mutual exclusion. All the processes can share

the same mutex semaphore that is initialized to 1. Then, a process has to wait until

the lock becomes 0. Then, the process can make the mutex semaphore 1 and start

its critical section. When it completes its critical section, it can reset the value of

mutex semaphore to 0 and some other process can enter its critical section.

Counting Semaphores: They can have any value and are not restricted over a

certain domain. They can be used to control access to a resource that has a

limitation on the number of simultaneous accesses. The semaphore can be

initialized to the number of instances of the resource. Whenever a process wants to

use that resource, it checks if the number of remaining instances is more than zero,

i.e., the process has an instance available. Then, the process can enter its critical

section thereby decreasing the value of the counting semaphore by 1. After the

process is over with the use of the instance of the resource, it can leave the critical

section thereby adding 1 to the number of available instances of the resource.

